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During navigation, information at multiple scales needs to be integrated. Single-unit recordings in rodents suggest that gradients of
temporal dynamics in the hippocampus and entorhinal cortex support this integration. In humans, gradients of representation are
observed, such that granularity of information represented increases along the long axis of the hippocampus. The neural underpinnings
of this gradient in humans, however, are still unknown. Current research is limited by coarse fMRI analysis techniques that obscure
the activity of individual voxels, preventing investigation of how moment-to-moment changes in brain signal are organized and how
they are related to behavior. Here, we measured the signal stability of single voxels over time to uncover previously unappreciated
gradients of temporal dynamics in the hippocampus and entorhinal cortex. Using our novel, single voxel autocorrelation technique, we
show a medial-lateral hippocampal gradient, as well as a continuous autocorrelation gradient along the anterolateral-posteromedial
entorhinal extent. Importantly, we show that autocorrelation in the anterior-medial hippocampus was modulated by navigational
difficulty, providing the first evidence that changes in signal stability in single voxels are relevant for behavior. This work opens the
door for future research on how temporal gradients within these structures support the integration of information for goal-directed
behavior.
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Introduction
To enable efficient goal-directed behavior, information must be
represented and integrated across multiple temporal and spatial
scales. It has been proposed that neural signal gradients in the
hippocampus and entorhinal cortex support such multiscale rep-
resentations in rodents, but evidence in humans is sparse and has
methodological limitations. Previously, fMRI analysis techniques
have uncovered local signal gradients in the human hippocampus
(Brunec, Bellana, et al. 2018). These investigations, however, have
been limited by analyzing patterns of activity across relatively
coarse regions of interest (ROIs), making it unclear how sustained
versus rapidly changing signals are distributed throughout the
hippocampus. Many of these analyses use predetermined ante-
rior and posterior anatomical masks, which limit our ability to
detect neural signal gradients in an unsupervised way, therefore
preventing us from investigating gradients that exist along both
anterior–posterior and medial-lateral axes of the hippocampus.
Moreover, there have been no prior investigations of autocorrela-
tion gradients in the entorhinal cortex, despite its key role in spa-
tial and temporal representations during navigation. To address
these limitations, we have developed a novel, data-driven analysis

based on autocorrelation of single voxels in fMRI during rest and
navigation. This technique allows us, for the first time, to track the
signal stability of individual voxels and their spatial distribution
in an unconstrained way along both the anterior–posterior and
medial-lateral axes of the hippocampus and entorhinal cortex.
Based on this single voxel analysis, we uncover gradients of neural
signal dynamics along these axes in both structures and relate
them to behavior.

In rodents, place fields in the ventral hippocampus (homolo-
gous to the anterior hippocampus in humans) span larger areas,
show a higher degree of overlap, and higher correlation in their fir-
ing across time, compared with the dorsal hippocampus (homol-
ogous to the posterior hippocampus in humans) (Jung et al. 1994;
Hasselmo 2008; Kjelstrup et al. 2008; Komorowski et al. 2013). A
similar gradient of hippocampal organization is also observed in
the human hippocampus. Tracking moment-to-moment similar-
ity across patterns of voxels during virtual navigation, Brunec,
Bellana, et al. (2018) found that signal similarity was signifi-
cantly greater within the anterior hippocampus relative to the
posterior hippocampus, indicating that, as in the rodent ventral
hippocampus, the human anterior hippocampus demonstrates
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slower changing signals that are sustained across time and space.
These results suggest that a relatively stable pattern of activity
in the rodent and human hippocampus follows a scaled gradi-
ent, from faster changing signal in the posterior (dorsal) hip-
pocampus to slower changing signal in the anterior (ventral)
hippocampus. This gradient organization might underlie fine-to-
coarse mnemonic representation, particularly when a different
granularity of information needs to be maintained across time
(Robin and Moscovitch 2017; Brunec and Momennejad 2022). In
addition to the dorsal-ventral gradient of spatial representation
observed in rodents, research suggests a difference in spatial
selectivity along the proximodistal axis (homologous to medial-
lateral in humans), specifically in CA1 (Igarashi et al. 2014), yet
whether a similar medial-lateral distinction exists in the human
hippocampus is still unclear (Hrybouski et al. 2019).

A key input structure to the hippocampus that has been impli-
cated in integrating information over time during navigation is
the entorhinal cortex. Prior research has found distinct func-
tional differentiation between the anterolateral and posterome-
dial aspects of the human entorhinal cortex (ERC), including a
few prior investigations of neural signal gradients in the ERC
(Evensmoen et al. 2015; Maass et al. 2015; Navarro Schröder
et al. 2015; Syversen et al. 2021). The lateral ERC in rodents, and
the homologous anterolateral ERC in humans, supports within-
object and object-location coding, as well as temporal information
processing (Olsen et al. 2017; Yeung et al. 2017, 2019; Tsao et al.
2018; Bellmund et al. 2019; Montchal et al. 2019). In contrast,
the posteromedial ERC in humans has been primarily linked
to scene processing (Maass et al. 2015; Navarro Schröder et al.
2015; Berron et al. 2018) and related to grid cell organization
(Bellmund et al. 2016), consistent with evidence of grid cells
in the medial ERC in rodents (Hafting et al. 2005). Given prior
evidence of functional distinctions of the ERC into anterolateral
and posteromedial regions, we developed a data-driven method
to directly probe whether there exists a continuous neural signal
gradient in both the anterior–posterior and medial-lateral axes of
this structure. Investigating these regions in tandem within the
same analytic framework is also motivated by evidence of strong
reciprocal connectivity between the hippocampus and ERC (Small
et al. 2011; Maass et al. 2015; Dalton et al. 2019, 2021).

To understand how a graded organization of signal dynamics
in the hippocampus and ERC supports goal-directed behavior, we
developed an analytic approach of temporal autocorrelation at
the single voxel level, which we implemented during both rest and
navigation. Electrophysiology studies in rodents find that neurons
within the hippocampus demonstrate firing patterns that are
maintained across time (i.e. temporal autocorrelation) and space
(i.e. spatial autocorrelation) as the rodent traverses a track (Jung
et al. 1994; Hasselmo 2008; Kjelstrup et al. 2008; Komorowski
et al. 2013). Because recording from single units or populations
of neurons in vivo in humans is challenging and not always
feasible, we developed an analytic approach in which we can
measure neural signal similarity over time, or autocorrelation, in
single voxels and relate it to behavior. Temporal autocorrelation in
fMRI represents the degree of similarity between the BOLD signal
and the temporally shifted, or lagged, version of the signal over
successive time intervals (Fig. 1A). Conventionally, it is assumed
that this autocorrelation in fMRI data originates from physical
and physiological noise (Purdon and Weisskoff 1998; Bullmore
et al. 2001; Lund et al. 2006; Lenoski et al. 2008; Arbabshirani
et al. 2014; Bollmann et al. 2018; James et al. 2019) or the hemody-
namic response function (HRF; Rajapakse et al. 1998; Arbabshirani
et al. 2014; James et al. 2019) and, therefore, has been considered

irrelevant to brain function. Recently, however, Arbabshirani et al.
(2019) found that autocorrelation reflects changes in cognitive
state (task vs. rest) as well as changes in mental state (healthy
control vs. schizophrenia), suggesting that the observed changes
in the autocorrelation are also modulated by cognitive processes.
Prior studies, however, have been limited and are unable to answer
the question of how temporal autocorrelation is directly related
to behavior. Examining the temporal autocorrelation1 of single
voxels during an active navigation task, therefore, is important for
understanding how a stable, highly correlated signal is relevant
for behavior.

Investigating the fMRI signal at the single voxel level allows us
to measure neural gradients with more precision than previous
methods. While studies with fMRI in humans suggest that func-
tional heterogeneity exists along the long axis of the hippocampus
(Nadel et al. 2013; Poppenk et al. 2013; see Grady 2020 for a review)
and the anterior–posterior and medial-lateral extents of the ERC
(e.g. Hafting et al. 2005; Maass et al. 2015; Navarro Schröder
et al. 2015), many of the previous analysis techniques have been
limited to investigations using predetermined anatomical masks,
which obscures the contribution of individual voxels, making it
unclear whether graded signals extend along multiple axes in
these regions. There have been a few studies that have employed
more precise techniques, such as investigating hippocampal and
entorhinal gradients slice-by-slice (Evensmoen et al. 2015) or
using voxelwise connectivity approaches (Navarro Schröder et al.
2015; Syversen et al. 2021). These studies converge on the idea
that there are continuous functional connectivity gradients along
the hippocampal long axis and the anterolateral to posteromedial
entorhinal extent defined by connectivity to other regions in
the brain, but it is still unknown how the internal dynamics
within these regions are distributed and how the signal profiles
of individual voxels are organized throughout the hippocampus
and entorhinal cortex. Examining the autocorrelation at the single
voxel level, therefore, allows for a finer grained analysis that
may be more sensitive to differences in navigational performance
and can help us to determine how a scaled gradient of signal
similarity might be employed to integrate representations across
spatial scales during navigation. We, therefore, combine our single
voxel autocorrelation approach with an unconstrained clustering
method to determine how temporal autocorrelation is distributed
in multiple dimensions throughout the hippocampus and ERC.

Here, we present evidence of a functional medial-lateral neural
signal gradient in the hippocampus as well as a novel continuous
gradient in the ERC. Using resting state fMRI data with high spatial
and temporal resolution from the Human Connectome Project
(HCP) (Dataset 1), we measured single voxel autocorrelation in
the hippocampus and ERC. Using task-based fMRI (with lower
spatial resolution), we measured the single voxel autocorrelation
in the hippocampus, while participants completed a real-world
navigation task (Dataset 2). We measured the similarity of single
voxels over time by correlating the timecourse of each voxel
with temporally shifted versions of itself (Fig. 1A). We applied
data-driven clustering to determine how temporal autocorre-
lation was spatially distributed throughout the hippocampus
and ERC (Fig. 1B and C). We reasoned that there were three
plausible mechanisms that might drive distinct autocorrelation

1 We chose temporal autocorrelation to calculate the similarity of a signal
to a lagged version of itself. Other signal “self-similarity” metrics in the time
domain (e.g. autoregressive model (López-Madrona et al. 2019) or frequency
domain (e.g. power-law exponent (He 2014) can alternatively be used. Neverthe-
less, we expect to observe the same findings, as these “self-similarity” measures
are highly correlated.
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Fig. 1. A) Method. For each voxel, the timecourse of activity was successively temporally shifted by 1 TR and correlated with itself. This was repeated
for a total shift of 4 s (i.e. 5 lags for resting state data [Dataset 1] and 2 lags for navigation data [Dataset 2]). This resulted in a vector of single voxel
autocorrelation values, with each value corresponding to a different lagged correlation. B) Single voxel autocorrelation (hypothetical values). The
procedure was repeated for all voxels in an ROI. To examine the spatial distribution of the single voxel autocorrelation, we plot the group-level single
voxel autocorrelation maps for each lag, averaged across runs and participants. C) Autocorrelation clustering (hypothetical values). The autocorrelation
values for each lag were stored in a vector (single voxel autocorrelation vector). The voxels in the ROI were clustered based on the similarity (ED) of single
voxel autocorrelation vectors. Single voxel autocorrelation vectors were clustered according to their ED (Blondel et al. 2008). Clustering was performed at
the individual-level and at the group-level. D) Three alternative autocorrelation gradient predictions. One possibility is that autocorrelation gradients
in the hippocampus and ERC would follow the pattern of reciprocal connectivity extending along the anterior–posterior extent. The second possibility
is that autocorrelation gradients are driven by physiological or hemodynamic factors. If this were the case, autocorrelation values in the entorhinal
cortex should be similar to those in the anterior portion of the hippocampus due to spatial proximity and similar anterior–posterior extent. The third
possibility is that autocorrelation values in these structures result from intrinsic functional properties, which could give rise to differentiable patterns
in hippocampus and ERC.

patterns (Fig. 1D). The first possibility is that reciprocal connec-
tivity between the hippocampus and ERC along the anterior–
posterior axes drives the autocorrelation gradient. If this were the
case, we would expect hippocampal and entorhinal gradients to
follow an anterior–posterior organization. This would result in
similar autocorrelation values in the anterior segments of both
regions and similar autocorrelation values in the posterior seg-
ments of both regions. A second possibility is that autocorrelation
gradients are primarily driven by physiological or hemodynamic

factors that differ along the anterior–posterior and superior–
inferior dimensions in the brain. In this scenario, autocorrelation
values in the entorhinal cortex should be similar to those in the
anterior hippocampus as it lies inferior to and extends slightly
anterior to the hippocampus. The third—and most interesting—
possibility is that the observed gradients reflect differences in the
intrinsic organization and processing timescales of these regions,
by way of their functional contributions to cognition. For example,
the human posterior hippocampus represents local spatial details
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(Doeller et al. 2008; Hirshhorn et al. 2012; Lee et al. 2012;
Evensmoen et al. 2013) and the anterolateral ERC is important
for precise temporal and object processing (Yeung et al. 2017;
Bellmund et al. 2019; Montchal et al. 2019); therefore, these
regions might exhibit low autocorrelation, which would be
representative of a neural signal that is updating more quickly. We
might also find that regions such as the anterior hippocampus,
which has been shown to represent coarse-grained information
(Poppenk et al. 2013), will exhibit high autocorrelation, which
would be representative of a neural signal that is changing
more slowly. In this case, autocorrelation patterns between the
hippocampus and ERC would be differentiable and related to
behavior. Further support for this prediction comes from research
examining the role of the hippocampal-entorhinal circuit in
spatial memory in rodents (Sasaki et al. 2015). This work suggests
that the hippocampus has spatial processing that is independent
of the inputs from medial entorhinal cortex. Altogether, evidence
from humans and rodents supports the prediction that we might
observe distinct and opposing gradients in the hippocampus
and entorhinal cortex that is driven by differences in mnemonic
processes in these regions.

In support of the notion that autocorrelation gradients are
driven by intrinsic functional properties of the different brain
regions, we found clear evidence of differentiable autocorrela-
tion patterns in hippocampus and ERC, and that hippocampal
autocorrelation gradients were meaningfully related to behavior
such that increases in navigation difficulty were associated with
increases in autocorrelation in the anterior-medial hippocampus.
These results are consistent with recent findings from resting-
state MRI (Vos de Wael et al. 2018) and a meta-analytic framework
(Genon et al. 2021) that suggest that there are two primary con-
nectivity gradients in the hippocampus (one along the anterior–
posterior axis and one along the medial-lateral axis). Importantly,
we critically extend this work by showing that these gradients
are related to behavior. Our single voxel autocorrelation approach
yields consistent and precise gradients of single voxel autocorre-
lation in the hippocampus and ERC, providing a powerful new
continuous and data-driven method that can illuminate how
temporal dynamics in brain signals relate to complex cognition.

Dataset 1: Resting state fMRI
Materials and methods
Participants
We analyzed resting state fMRI data from 44 participants (14
male) from the HCP Retest dataset. This dataset consists of data
from 44 participants who were scanned twice using the full
HCP imaging protocol. All subject recruitment procedures and
informed consent forms, including consent to share de-identified
data, were approved by the Washington University Institutional
Review Board (Glasser et al. 2016). The present analysis of this
dataset was approved by the University of Toronto research ethics
board.

Scanning parameters and preprocessing
Resting state data were collected on a 3T scanner using a multi-
band EPI pulse sequence (TR = 720 ms, TE = 33.1 ms, 72 slices with
2-mm thickness, FOV = 208 × 180 mm, voxel size = 2 × 2 mm, Flip
angle = 52, Multiband factor = 8, Scan time = 14 min and 33 s).
Each run was repeated twice, with a left-to-right and a right-to-
left phase encoding direction. To ensure that the results were
not due to distortions caused by differences in phase encod-
ing direction, we computed the single voxel autocorrelation and

conducted the autocorrelation clustering on both the left-to-
right and the right-to-left phase encoding direction datasets (see
Supplementary Fig. S3 for right-to-left phase encoding direction
results). The findings for left-to-right and the right-to-left phase
encoding direction were similar suggesting that our results are not
affected by distortions caused by differences in phase encoding
direction. The following results are generated from data with the
left-to-right phase encoding direction.

Initial fMRI preprocessing steps already applied to the down-
loaded data included gradient distortion correction, motion cor-
rection (based on FLIRT), field map distortion correction, brain
extraction, registration to T1-weighted image and MNI standard
space, intensity normalization, and bias field removal (Glasser
et al. 2013; Smith et al. 2013; Van Essen et al. 2013). The data
were further preprocessed by running ICA using FSL’s MELODIC
function with automatic dimensionality estimation limited to a
maximum of 250. ICA is able to separate multiple signal and
noise components, including head motion and physiological sig-
nals. These components are fed into the FIX in FSL (Griffanti
et al. 2014; Salimi-Khorshidi et al. 2014), which classifies compo-
nents into “good” vs. “bad.” Bad components are then removed
from the data in a “nonaggressive” manner, in which only the
unique variance associated with the bad components is removed
from the data. Twenty-four confound timeseries derived from
the motion estimation (the 6 rigid-body parameter timeseries,
their backwards-looking temporal derivatives, plus all 12 resulting
regressors squared) are also regressed out. No spatial smoothing
was applied; however, there is a degree of smoothing that occurs
during the data interpolation which is required for registration
of the fMRI data into the standard MNI space. To eliminate high-
frequency noise and artifacts, fMRI signals are low-pass filtered
using MATLAB IIR Butterworth filter (designfilt function in Signal
Processing Toolbox) with a cutoff frequency of 0.1 Hz.

Single voxel autocorrelation method
Computing single voxel autocorrelation
Bilateral hippocampal and entorhinal masks were generated
using the Harvard-Oxford Atlas in FSL (see Supplemental Mate-
rials for sample BOLD images with outlined hippocampal and
entorhinal masks; Supplementary Fig. S4). For each voxel inside
each of the ROIs, unbiased autocorrelation (as implemented
in MATLAB xcorr function) was calculated. Specifically, the
timecourse of a single voxel’s activity was correlated with
itself shifted by a temporal lag, the length of 1 TR (Dataset 1
TR = 720 ms). We repeated this process, shifting the timecourse
forward by 1 lag (720 ms) and correlating it with the original, non-
shifted timecourse until a maximum temporal shift of 3,600 ms
was reached. We chose 3,600 ms because it has been shown that
the autocorrelation of the fMRI signal in the gray matter drops off
after approximately 4,000 ms (or 4 s) (i.e. it is not distinguishable
from the autocorrelation of other noise) (Bollmann et al. 2018).
With a TR of 720 ms, the closest we could get to 4,000 ms
without going over was 3,600 ms (or 5 lags). For example, the
nonshifted timecourse was correlated with lag 1 (length of 1 TR),
lag 2 (length of 2 TRs), etc. (Fig. 1A). The autocorrelation (AC)
computed for each lag was stored in a vector. The autocorrelation
vector (single voxel autocorrelation vector) contained 5 values
(one single voxel autocorrelation for each lag). This approach
resulted in a single voxel autocorrelation vector for each voxel.
All single voxel autocorrelation values were normalized by
subtracting the mean and dividing by the standard deviation
within each mask so that meaningful comparisons could be made
between the 2 fMRI datasets (resting state and task). Single voxel
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autocorrelation maps were then averaged across the first and
second runs from the 44 participants to generate an average
overall map for visualization purposes (e.g. Fig. 1B). Statistical
analyses were conducted on the single voxel autocorrelation for
each scanned run. The single voxel autocorrelation generator
and autocorrelation cluster generator scripts are available online:
https://github.com/aligoles/SingleVoxelAutocorrelation

Single voxel autocorrelation—reliability analysis
To verify that the observed single voxel autocorrelation pattern
was not a measurement artifact (e.g. head motion, magnetic field
inhomogeneity, physiological artifacts, etc.), we tested the relia-
bility of the single voxel autocorrelation pattern within an indi-
vidual. In our case, the single voxel autocorrelation pattern was
deemed reliable if there was a high degree of agreement between
the single voxel autocorrelation values generated from different
runs from the same participant compared with runs from dif-
ferent participants. Reliability of the single voxel autocorrelation
values was measured by calculating the Euclidean distance (ED)
between the single voxel autocorrelation vectors for all pairs of
run-wise datasets, and 44 participants with 2 repeated sessions
produced 44 intrasubject and 3,784 intersubject ED values. The
lower the ED between two single voxel autocorrelation vectors,
the higher the similarity between them. We expected to see more
similar single voxel autocorrelation patterns between single voxel
autocorrelation vectors generated from two runs of the same
participant compared with two runs from different participants
(lower intrasubject ED compared with intersubject ED). The inter-
subject and intrasubject ED are not completely independent from
one another; therefore, we used nonparametric permutation to
test for significance. We randomly shuffled the intra- and inter-
subject labels and pulled two samples of size 44 (intrasubject) and
3,784 (intersubject). We calculated the mean difference between
the 2 samples and repeated this process 10,000 times, resulting in
a histogram of mean differences under the null hypothesis (i.e. the
difference between intra- and intersubject ED equal to zero). We
compared the observed difference between intra- and intersub-
ject EDs with the null distribution and calculated nonparametric
P-values. Permutation tests were conducted using a permutation
testing package in Matlab (Laurens 2021).

Computing single voxel autocorrelation clusters
(autocorrelation clustering)
The ED between the single voxel autocorrelation vectors of each
voxel pair in each mask was calculated to create a distance
matrix. The distance matrix was first normalized (i.e. divided by
the maximum value) and then subtracted from 1 to generate a
similarity matrix ranging from 0 to 1. This similarity matrix was
used to generate hippocampal clusters by applying a Louvain
clustering method using the modularity optimization algorithm
(Blondel et al. 2008; Wickramaarachchi et al. 2014). Unlike the
majority of the clustering methods, modularity optimization does
not require to assign the number of clusters and estimates the
optimum number of clusters from data. Furthermore, it has been
shown that the clustering algorithms, similar to the one we used,
generate stable results as long as the sample size is larger than
20 samples per cluster (Dalmaijer et al. 2022). In our study, each
ROI mask (whole entorhinal left/right and whole hippocampus
left/right) is large enough to generate at least 20 voxels per
cluster (see Supplementary Table S2 for full summary of mask
sizes). In addition to clustering at the level of each individual run,

group-level clustering was performed by averaging the similar-
ity matrices of all participants (for a theoretical schematic, see
Fig. 1C).

Autocorrelation clustering—reliability analysis
To better understand the functional subunits of the hippocampus
(and ERC), we tested whether the single voxel autocorrelation
estimates could be divided into spatially reliable clusters. Relia-
bility of the clustering was measured by calculating the overlap
between the generated clusters from each scanned run using the
Jaccard coefficient. The Jaccard coefficient of regions A and B is
defined as

J (A, B) = | A ∩ B |
| A ∪ B |

where | A ∩ B | is the number of common voxels in both A and
B (intersection) and | A ∪ B | is the number of voxels in A and B
combined (union). Individual parcellations were then compared
with the group-level parcellation to examine the consistency of
parcellation. The Jaccard coefficient was calculated both intra-
subject (overlap between clusters extracted from two runs from
the nth subject) and intersubject (overlap between the cluster
from the nth subject and the same cluster estimated in all other
subjects).

Assuming that the single voxel autocorrelation pattern is con-
sistent across the two runs of the same participant, we expected
there to be greater spatial overlap (higher Jaccard coefficient)
among clusters within an individual compared with between
different individuals. The Jaccard coefficients for clusters within
participants are not completely independent from the Jaccard
coefficients for clusters between participants; therefore, we used
nonparametric permutation to test for significance. For each clus-
ter, we randomly shuffled the intra- and intersubject labels and
pulled two samples of size 44 (intrasubject) and 3,784 (intersub-
ject). We calculated the mean difference between the 2 samples
and repeated this process 10,000 times, resulting in a histogram
of the mean differences under the null hypothesis (i.e. the differ-
ence between intra- and intersubject Jaccard coefficient equal to
zero). We compared the observed difference between intra- and
intersubject Jaccard coefficients with the null distribution and
calculated nonparametric P-values.

Temporal SNR control analysis
Temporal signal-to-noise ratio (temporal SNR) is a measure of
noise that may interfere with the estimation of the autocorre-
lation of the fMRI signal and varies in intensity throughout the
brain (Hutton et al. 2011). To control for the effects of tempo-
ral SNR, we calculated the temporal SNR for each cluster and
tested whether the variability in hippocampal autocorrelation
could be explained by temporal SNR. We computed the temporal
SNR for each voxel by taking the average of the voxel’s time-
course and dividing it by the standard deviation. To get the most
accurate estimate of the tSNR for each voxel, we used the data
that did not have temporal filtering applied. We averaged the
temporal SNR across all the voxels in each cluster to get the
average temporal SNR per cluster. A table of the average temporal
SNR per cluster can be found in Supplementary Table S6. We
then conducted linear mixed effects models predicting average
autocorrelation of each cluster (lag 1) with Hemisphere (left,
right), Cluster (1, 2, 3), and average temporal SNR as fixed effects
and participant as the random intercept in the random effects
term.
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Fig. 2. Hippocampus. A) Single Voxel Autocorrelation. Group-level single voxel autocorrelation maps averaged across all runs for all participants.
B) Autocorrelation Clustering. Group-level clusters (top) and run-level cluster maps for two runs from an example participant (bottom). Three distinct
clusters were found at both the group and the individual run-level. Cluster 1 was located in the anterior-medial hippocampus, Cluster 3 was located in the
posterior-lateral hippocampus, and Cluster 2 was located between Cluster 1 and 3. C) Single Voxel Autocorrelation: Lag 1. Single voxel autocorrelation
(lag 1) averaged per slice and projected into three axes (X, Y, and Z) to visualize changes in medial-lateral, anterior–posterior, and inferior–superior
directions (plots depict left hemisphere; right hemisphere looked similar). The average cluster assignment of voxels on each slice is presented as
the background color to show the gradation in values along the three axes. D) Average Cluster Value Across Lag. Average group-level single voxel
autocorrelation values for each cluster at each lag. Cluster 1 was associated with the highest single voxel autocorrelation values, Cluster 2 with
intermediate values, and Cluster 3 with the lowest. This was consistent across all 5 lags.

Results
Hippocampus
Spatial distribution of single voxel autocorrelation
Our analysis correlated the timecourse of activity of each voxel
in the hippocampus with activity in that same voxel shifted by a
temporal lag of 1 TR, repeating this process until a maximum
temporal shift of 5 lags was reached (Fig. 1A) and generated
maps of single voxel autocorrelation values for each lag (for a
theoretical schematic, see Fig. 1B). We found that single voxel
autocorrelation maps at the group level (lags 1–5) showed a
notable difference in the distribution of single voxel autocorre-
lation values along hippocampal axes (Fig. 2A). More specifically,
voxels with higher single voxel autocorrelation were mainly in the
anterior-medial region, whereas voxels with lower single voxel
autocorrelation were mainly in the posterior-lateral region (in
both left and right hippocampus). As shown in Fig. 2A, although
the overall autocorrelation decreased as the lag increased, the
overall pattern of autocorrelation gradients was similar for
lags 1–5.

Single voxel autocorrelation—reliability results
We next tested the reliability of these results. Here, we defined
a reliable result as one in which single voxel autocorrelation

vectors generated from two runs of the same participant were
more similar than two runs from different participants (lower
intrasubject EDs compared with intersubject EDs). Nonparamet-
ric permutation tests comparing intrasubject and intersubject ED
revealed reliable results in both the left (intrasubject mean ± SD:
7.43 ± 2.07, intersubject mean ± SD: 9.38 ± 2.22, P < 0.0001) and
right hippocampus (intrasubject mean ± SD: 7.22 ± 1.98, intersub-
ject mean ± SD: 9.02 ± 2.02, P < 0.0001) (Supplementary Fig. S1A).
These high intrasubject similarity values suggest that the single
voxel autocorrelation pattern is an intrinsic feature of the brain,
likely originating from neuronal sources, rather than noise or
imaging artifacts.

Autocorrelation clustering
Data-driven clustering of the single voxel autocorrelation vectors
revealed three distinct clusters in both the left and right
hippocampus (Fig. 2B); notably, past work that segmented the
hippocampus into 2 ROIs (anterior and posterior) a priori would
not have been able to detect the presence of this third cluster.
Consistently across all 5 lags, we found that Cluster 1 had the
highest single voxel autocorrelation values and was located in
the anterior-medial hippocampus (Fig. 2D). Cluster 3 had the
lowest single voxel autocorrelation values and was located in
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the posterior-lateral part of the hippocampus. Cluster 2 had
intermediate single voxel autocorrelation values and was located
between Clusters 1 and 3. These three clusters were also reliably
observed at the individual level (cluster maps from two runs of
an example participant are shown in Fig. 2B). Cluster 1 was the
largest cluster, followed by Cluster 3 and Cluster 2. Cluster 2 was
the smallest cluster. For a summary of the number of voxels
within each cluster, see Supplementary Table S3.

In summary, clustering revealed a high-to-low single voxel
autocorrelation gradient along the anterior–posterior axis, con-
sistent with what has been previously found in the literature
(Brunec, Bellana, et al. 2018; Raut et al. 2020). In addition, we
found differences along the medial-lateral axis, as well as a promi-
nent anterior-medial cluster of high single voxel autocorrelation
that could be distinguished from a posterior-lateral cluster of
low single voxel autocorrelation. While previous methods using
predetermined anterior/posterior ROI masks might have missed
this medial-lateral distinction, our data-driven method provides
evidence that an autocorrelation gradient exists along multiple
spatial dimensions.

Autocorrelation clustering—reliability results
The reliability of single voxel autocorrelation clustering was eval-
uated by measuring spatial overlap between clusters, calculated
by the Jaccard coefficient (Supplementary Fig. S1B). Here, we
defined a reliable result as one in which the spatial distribution
of autocorrelation clusters was consistent across the 2 runs of
the same participant, indicated by greater overlap (higher Jaccard
coefficient) among clusters within an individual compared with
between different individuals. Using nonparametric permutation,
we found high reliability for clusters in the bilateral hippocampus,
specifically Cluster 1 (Left: P < 0.001; Right: P < 0.001) and Cluster 3
(Left: P < 0.001; Right: P < 0.001). These findings of high intra- and
intersubject overlap suggest that Clusters 1 and 3 were highly
reliable, within individuals. Cluster 2, however, had significantly
lower overlap (Left: P = 0.06; Right: P = 0.007), suggesting more
variability within individuals.

Temporal SNR control analysis
To rule out the possibility that the hippocampal autocorrelation
clusters are being driven by noise, we calculated the temporal
SNR for each cluster and tested whether the hippocampal auto-
correlation could be explained by temporal SNR. We ran a linear
mixed effects model with Hemisphere (left, right), Cluster (1, 2,
3), and temporal SNR as fixed effects predictors and average
autocorrelation of each cluster (lag 1) as the predicted variable.
We found a significant effect of Cluster (F(2,461.84) = 6619.86,
P < 0.001), suggesting that even when temporal SNR is included
in the model, clusters significantly explained the variance of the
autocorrelation. We did not find a significant effect of temporal
SNR. Additionally, we ran another model without Cluster as a
fixed effect predictor and compared the two models (the one
with and without Cluster) using a Chi square test. We found that
the model including Cluster was significant χ2 (8, n = 19) = 1,422.9,
P < 0.001, indicating that the model including Cluster was a better
fit of the data compared with the model that only had hemisphere
and temporal SNR alone. Together these results suggest that tem-
poral SNR alone cannot explain the hippocampal autocorrelation
clusters.

Gradients of single voxel autocorrelation (lag 1)
The single voxel autocorrelation and autocorrelation clustering
results presented above both suggest the presence of an

autocorrelation gradient along 2 main axes: the anterior–
posterior axis and the medial-lateral axis. To examine these
individual gradients more precisely, we plotted the single voxel
autocorrelation across hippocampal slices along the X (medial-
lateral), Y (posterior–anterior), and Z (inferior–superior) axes. We
observed consistent gradients in every participant. Specifically,
single voxel autocorrelation gradually decreased in the medial-
to-lateral direction and increased in the posterior-to-anterior
direction (Fig. 2C; we focused on lag 1, but a similar pattern was
revealed across all lags, as shown in Fig. 2A). A rough gradient
of high-to-low autocorrelation was also observed in the inferior–
superior axis, which is due to the angle of the hippocampus (i.e.
the anterior hippocampus is located more inferiorly relative to
the posterior hippocampus). The medial-lateral gradient in the
hippocampus was not expected; therefore, we wanted to rule
out the possibility that this was observed by chance. To do this,
we first fit a line to each individual’s autocorrelation data in
the medial-lateral axis (i.e. the colored lines in Fig. 2C, left). We
computed the slope of the line for each individual run. Note, each
individual in Dataset 1 had two scanned runs. We computed the
slope for each run separately and then averaged the two runs
to get one average slope for each individual. We compared the
distribution of slopes to zero by conducting a one sample t-test on
the average slopes to determine whether they were significantly
greater than zero. We did this for each hemisphere separately. We
found that average medial-lateral slopes in both the left and right
hemisphere were significantly greater than zero (Left hemisphere:
t(43) = 17.34, P < 0.001; Right hemisphere: t(43) = 42.92, P < 0.001).
These results suggest that the medial-lateral gradient in the
hippocampus was not due to chance (see Supplementary Fig. S2
and Supplementary Table S1 for a full summary of the slopes and
t-test results).

When we investigated the spatial distribution of the 3 clusters
(projected on the background of the plots in Fig. 2C), we observed
a gradient of cluster assignment that complemented the single
voxel autocorrelation gradients. Specifically, high-to-low single
voxel autocorrelation gradients were also associated with a clus-
ter gradient from Cluster 1 to Cluster 3.

Entorhinal cortex
Spatial distribution of single voxel autocorrelation
We repeated the analyses above in the ERC. To illustrate the distri-
bution of autocorrelation values of individual voxels throughout
the ERC, we plotted the group-level single voxel autocorrelation
maps for lags 1–5 (Fig. 3A). The maps illustrate a difference in
single voxel autocorrelation throughout the ERC. Specifically, vox-
els with higher single voxel autocorrelation were mainly in the
posterior-medial region, whereas voxels with lower single voxel
autocorrelation were mainly in the anterior-lateral region (in both
left and right ERC).

Single voxel autocorrelation—reliability results
Nonparametric permutation tests comparing intrasubject and
intersubject ED revealed reliable results in both the left (intrasub-
ject mean ± SD: 11.43 ± 3.64, intersubject mean ± SD: 12.87 ± 2.83,
P < 0.001 and right ERC (intrasubject mean ± SD: 10.41 ± 2.63,
intersubject mean ± SD: 13.19 ± 2.53, P < 0.001; see Supplemen-
tary Fig. S1C). This analysis demonstrates the reliability of
the single voxel autocorrelation and suggests that single voxel
autocorrelation patterns between vectors generated from two
runs of the same participant were more similar than two runs
from different participants (lower intrasubject EDs compared with
intersubject EDs).
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Fig. 3. Entorhinal cortex. A) Single Voxel Autocorrelation. Group-level single voxel autocorrelation maps averaged across all runs for all participants.
B) Autocorrelation Clustering. Group-level clusters (top) and run-level cluster maps for two runs from an example participant (bottom). Two distinct
clusters were found in the left hemisphere and three in the right hemisphere. In the left hemisphere, Cluster 1 was located in the posterior-medial ERC
and Cluster 2 was in the anterior-lateral ERC. In the right hemisphere, Cluster 1 was located in the posterior-medial ERC, Cluster 3 was located in the
anterior-lateral ERC, and Cluster 2 was located between Cluster 1 and 3. C) Single Voxel Autocorrelation: Lag 1. Single voxel autocorrelation projected
below onto three axes (X, Y, and Z) to visualize changes in medial-lateral, anterior–posterior, and inferior–superior directions (for the left hemisphere;
right hemisphere looked similar). The average cluster assignment of voxels on each slice is presented as the background color to show the gradation in
values along the three axes (Note the gradation depicts only Cluster 1 and 2 as there were only two significant clusters found in the left hemisphere).
D) Average Cluster Value Across Lag. Average group-level single voxel autocorrelation values for each cluster at each lag. In the left hemisphere, Cluster
1 was associated with the highest single voxel autocorrelation values and Cluster 2 with low autocorrelation values. In the right hemisphere, Cluster
1 was associated with the highest single voxel autocorrelation, Cluster 2 with intermediate values, and Cluster 3 with the lowest. This was consistent
across all 5 lags.

Autocorrelation clustering
The group-level clustering analysis on the voxels within the ERC
revealed two distinct clusters in the left hemisphere and three
clusters in the right (Fig. 3B). For comparison, cluster maps from
two runs of an example participant are shown in Fig. 3B. Cluster 1
was located in the posteromedial ERC and had the highest single
voxel autocorrelation values in both left and right hemispheres.
Cluster 2 was observed in the left hemisphere and was located
toward the anterior-lateral ERC with low single voxel autocorre-
lation values. In the right hemisphere, it was an intermediate
cluster. Cluster 3 was only observed consistently in the right hemi-
sphere and was located in the anterior-lateral ERC with the lowest
single voxel autocorrelation values. We computed the group-level
single voxel autocorrelation for each cluster and plotted it across
all 5 lags (Fig. 3D). Across all 5 lags, Cluster 1 consistently had the
highest single voxel autocorrelation values, followed by Cluster 2
and Cluster 3. In the right hemisphere, Cluster 1 was the largest
cluster, followed by Cluster 3 and Cluster 2. In the left hemisphere,
Cluster 1 was the largest cluster and Cluster 2 was the smallest
cluster. For a summary of the number of voxels within each
cluster, see Supplementary Table S3.

Autocorrelation clustering—reliability results
The reliability measure for ERC clusters was calculated by the Jac-
card coefficient Supplementary Fig. S1D. Nonparametric permu-
tation tests comparing intrasubject and intersubject cluster over-
lap revealed reliable results in the left and right hemisphere. In the
left hemisphere, the Cluster 1 (P < 0.001) and Cluster 2 (P < 0.001)
were reliable. In the right hemisphere, Cluster 1 (P < 0.001) and
Cluster 3 (P < 0.001) were reliable. This suggests that these clusters
were highly reliable within individuals. In the right hemisphere,
Cluster 2 had very small Jaccard values, suggesting less reliability
within individuals (Right: P = 0.53).

Temporal SNR control analysis
We calculated the temporal SNR for each cluster and tested
whether the entorhinal autocorrelation clusters could be
explained by temporal SNR. We ran a linear mixed effects model
with Hemisphere (left, right), Cluster (1, 2, 3), and temporal SNR
as fixed effects predictors and average autocorrelation of each
cluster (lag 1) as the predicted variable. We found a significant
effect of Cluster (F(2,396.42) = 1,237.65, P < 0.001), suggesting that
even when temporal SNR is included in the model, clusters
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significantly explained the variance in the autocorrelation. We
did not find a significant effect of temporal SNR. Additionally,
we ran another model without Cluster as a fixed effect predictor
and compared the two models (the one with and without Cluster)
using a Chi square test. We found that the model including Cluster
was significant χ2 (8, n = 19) = 781.62, P < 0.001, indicating that the
model including Cluster was a better fit of the data compared
with the model that only had hemisphere and temporal SNR
alone. Altogether, these results suggest that temporal SNR alone
cannot explain the entorhinal autocorrelation clusters.

Gradients of single voxel autocorrelation (lag 1)
Single voxel autocorrelation values for lag 1 were projected onto
X (medial-lateral), Y (posterior–anterior), and Z (inferior–superior)
axes. As shown in Fig. 3C, in every participant, single voxel
autocorrelation values gradually decreased in the medial-to-
lateral direction and the posterior-to-anterior direction (Fig. 3C).
We found a gradient of low-to-high autocorrelation along the
inferior–superior axis, which is due to the fact that the posterior
region of the ERC is more superior than its anterior region. We
observed a gradient of cluster assignment that complemented
the single voxel autocorrelation gradients, where high-to-low
gradients were also associated with a cluster gradient from
Cluster1 to Cluster 2.

Dataset 2: Navigation fMRI
We next aimed to replicate the observed effects in task fMRI and
relate changes in single voxel autocorrelation to behavior. Specif-
ically, we were interested in how single voxel autocorrelation
throughout the hippocampal long axis might be modulated by
differences in difficulty during a temporally extended navigation
task. Therefore, we performed our single voxel autocorrelation
analyses on a task fMRI dataset acquired, while participants
navigated in a familiar virtual reality environment (previously
described in Brunec, Bellana, et al. 2018). Due to the lower spa-
tial resolution in this dataset, we were not able to examine the
ERC and, thus, these analyses focused only on the hippocampus
(see Supplemental Materials for sample BOLD images illustrat-
ing the poor resolution of the entorhinal cortex in Dataset 2;
Supplementary Fig. S4).

Material and methods
Participants
Nineteen participants (9 males; mean age 22.58 years, range 19–
30 years) were scanned while navigating Google Street View routes
around the city of Toronto. All subject recruitment procedures
and informed consent was approved by the University of Toronto
research ethics board.

Paradigm
Participants met with the experimenter ahead of time and built
routes that were either highly familiar or less familiar to them
(e.g. frequently traveled or not). Participants then returned to
the lab for their second session and were scanned, while they
navigated four different types of routes. (i) Familiar: participants
started at a familiar landmark and navigated to a familiar goal
destination via a familiar route, (ii) Mirrored: participants started
at a familiar landmark and traveled to a familiar destination
via a familiar route, but the images of the route were mirrored
(left–right reversed), (iii) Unfamiliar: participants started at a
familiar location, navigated to a familiar destination, but they
were instructed to take an unfamiliar route between the two,
and (iv) GPS: participants started at an unfamiliar location in

an unfamiliar part of town and followed the directions displayed
by an arrow on the screen to the goal destination. Participants
completed 4 unique routes in each condition, 16 routes in total (1
route = 1 scanned run). At the end of each route, participants rated
the difficulty of the route on a scale from 1 (difficult) to 9 (easy).

Scanning parameters and preprocessing
Participants were scanned with a 3T Siemens MRI scanner
at Baycrest’s Rotman Research Institute. A high-resolution 3D
MPRAGE T1-weighted pulse sequence image (160 axial slices, 1-
mm thick, FOV = 256 mm) was first obtained to register functional
maps against brain anatomy. Functional imaging was performed
to measure brain activation by means of the blood oxygenation
level dependent (BOLD) effect. Functional T2

∗-weighted images
were acquired using echo-planar imaging (30 axial slices, 5-mm
thick, TR = 2,000 ms, TE = 30 ms, flip angle = 70◦, FOV = 200 mm).
The native EPI resolution was 64 × 64 with a voxel size of
3.5 mm × 3.5 mm × 5.0 mm. Images were first corrected for head
motion using the Analysis of Functional NeuroImages (AFNI; Cox
1996). All subsequent analysis steps were conducted using the
statistical parametric mapping software SPM12.

Preprocessing involved slice timing correction, spatial realign-
ment and co-registration, with a resampled voxel size of 3-mm
isotropic, with no spatial smoothing. As all of our analyses rely on
covariance, we additionally regressed out the mean time-courses
from participant-specific white matter, and cerebrospinal fluid
masks, alongside estimates of the 6 rigid body motion parameters
from each EPI run. To further correct for the effects of motion
which may persist despite standard processing (Power et al. 2012),
an additional motion scrubbing procedure was added to the end
of our preprocessing pipeline. Outlier timepoints were identified
using the conservative multivariate technique from Campbell
et al. (2013), which involves using Principal Components Anal-
ysis (PCA) to calculate the displacement of timepoints relative
to surrounding timepoints. The displacement values were then
compared with a Gamma probability distribution and timepoints
that were identified at P < 0.05 were labeled as motion outliers.
The time points that were motion outliers in both the 6 rigid-
body motion parameter estimates and BOLD signal were removed,
and outlying BOLD signal was replaced by interpolating across
neighboring data points. This motion scrubbing approach further
minimizes any effects of motion-induced spikes on the BOLD sig-
nal, over and beyond standard motion regression, without leaving
sharp discontinuities due to the removal of outlier volumes (for
details, see Campbell et al. 2013). To enable comparisons at the
group-level, the final step of the preprocessing involved warping
participants’ functional data to the MNI-space template.

Single voxel autocorrelation method
Computing single voxel autocorrelation
To compute the single voxel autocorrelation, we completed the
same procedure outlined in Dataset 1. We used resampled the
bilateral hippocampal mask from Dataset 1 to 3 mm in order
to extract the HPC voxels in Dataset 2 (see Supplemental Mate-
rials for sample BOLD images with outlined hippocampal mask;
Supplementary Fig. S4). For each voxel, the single voxel autocorre-
lation was calculated by repeatedly shifting temporal lags (length
of 1 TR) until a maximum lag of 4 s was reached. In Dataset 2,
the TR was 2,000 ms; therefore, single voxel autocorrelation for 2
lags (or 2 TRs) was calculated, resulting in a maximum lag of 4 s.
As outlined in the procedure above, single voxel autocorrelation
values were normalized by subtracting the mean and dividing by
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the standard deviation. Single voxel autocorrelation was calcu-
lated for all four runs of each navigational condition (Familiar,
Unfamiliar, Mirrored, GPS). The single voxel autocorrelation was
averaged across the four scanned runs (unique routes), resulting
in four different maps (one for each navigational condition). Single
voxel autocorrelation maps were then averaged across the 19
participants to generate an average group map for each navigation
condition.

Participants completed 16 navigation runs (four in each con-
dition) at their own pace. Because the conditions varied in dif-
ficulty, the average number of TRs differed across conditions
and participants. Every route was 2–10 km long and the average
run (route) length was 137.6 TRs (2 s TRs). The average number
of TRs was lowest in the GPS condition (M = 92.13, SD = 17.44),
followed by the Familiar condition (M = 136.45, SD = 39.18), the
Mirrored condition (M = 155.73, SD = 36.84), and the Unfamiliar
condition (M = 158.78, SD = 32.13). In order to compare single voxel
autocorrelation across scanned runs with a similar number of
TRs/lengths, we chose to filter out any runs that were unusually
short (that the participant either did not complete or completed
very quickly). We excluded runs that were less than 88 TRs long.
This resulted in an average of 13.36 runs (SD = 1.21) per partici-
pant. The GPS runs were disproportionately shorter than the other
conditions, resulting in more GPS runs excluded than other con-
ditions. For two participants, all four control runs were less than
88 TRs long, and therefore, all of their control runs were excluded.
The average number of routes included in the following analyses
per participant is as follows: Mirrored (M = 3.89, SD = 0.31), Unfa-
miliar (M = 3.84, SD = 0.50), Familiar (M = 3.68, SD = 0.47), and GPS
(M = 1.95, SD = 1.22).

Computing autocorrelation clusters (autocorrelation
clustering)
We repeated the single voxel autocorrelation clustering procedure
described above in Dataset 1 to determine clusters of single
voxel autocorrelation within each navigational condition. The ED
between the single voxel autocorrelation vectors (composed of lag
1 and lag 2) of each voxel pair in each mask was calculated and the
Louvain Clustering method was applied to generate the clusters.

Relating single voxel autocorrelation
to navigation condition
Comparing average autocorrelation of clusters across
navigation condition
To investigate how the spatial distribution of single voxel auto-
correlation is related to navigation difficulty, we compared the
average single voxel autocorrelation (lag 1 and 2) of each cluster
across the four different conditions: GPS, Familiar, Unfamiliar, and
Mirrored. We conducted the analysis of lag 1 and lag 2 separately.
The results of the lag 1 analysis were very similar to lag 2;
therefore, we only present the results for lag 1. A full description
of the analysis of lag 2 can be found in Supplementary Fig. S5.
For each participant, we averaged the single voxel autocorrelation
(lag 1) across all voxels in each cluster and Z transformed the
values. To test whether there was a significant difference between
single voxel autocorrelation during different navigation condi-
tions, we modeled the data using linear mixed effects models
with fixed effects based on experimental hypothesis and ran-
dom effects structures to account for the effects of individual
participants. We included Hemisphere, Cluster, and Navigation
condition as fixed effects and participant as the random intercept
in the random effects term. We began each model with a random
effects structure that was the maximal justified by the design

(including random slopes) (Barr et al. 2013). We systematically
pruned the random effects structure until the model converged
while avoiding a singular solution (i.e. overfitting) (Singmann and
Kellen 2019). Models that included random slopes either failed
to converge or reached a singular solution; therefore, the models
reported only include random intercepts for random effects term.
This analysis was conducted in R (R Core Team 2019) using the
afex (Singmann et al. 2020) and the tidyverse packages (Wickham
2017). We used the Tukey method to correct P-values for multiple
comparisons in post hoc tests.

Head motion is a noise artifact that may contribute to the
autocorrelation signal. This is why, in addition to regressing out
the estimates of the 6 rigid body motion parameters from each
scan, we conducted an additional motion scrubbing step where
we removed time points that were identified as outliers in the 6
rigid body motion parameters and those that were outliers iden-
tified using PCA (Campbell et al. 2013). To ensure, however, that
the differences in autocorrelation we observed across navigation
conditions was not due to differences in head motion across the
different conditions, we conducted an additional head motion
control analysis (see Supplementary Table S5). We found that
differences in head motion across navigation conditions could
not account for the differences in autocorrelation observed across
navigation condition.

Temporal SNR control analysis
We conducted the control analysis described in Dataset 1 to
make sure that the difference in hippocampal autocorrelation
across navigation conditions that we observed could not solely be
explained by temporal SNR. Here, we calculated the temporal SNR
for each cluster for each of the four navigation conditions sepa-
rately (GPS, Familiar, Unfamiliar, and Mirrored). We ran a linear
mixed effects model on the average autocorrelation per cluster
(lag 1) with Hemisphere (left, right), Cluster (1, 2, 3), Navigation
condition (GPS, Familiar, Unfamiliar, Mirrored), and temporal SNR
per cluster as fixed effects predictors.

Results
Hippocampus
Spatial distribution of single voxel autocorrelation
We observed a difference in single voxel autocorrelation along the
anterior–posterior and medial-lateral hippocampal axes, where
voxels with higher single voxel autocorrelation were found in
the anterior-medial hippocampus and voxels with lower single
voxel autocorrelation were found in the posterior-lateral hip-
pocampus. Figure 4A shows the group-level single voxel auto-
correlation maps for the four navigation conditions (as single
voxel autocorrelation maps for lags 1–2 were similar, only lag
1 is depicted in Fig. 4A). The spatial distribution of single voxel
autocorrelation was similar across navigation conditions and was
also similar to the findings from Dataset 1. We again observed
a medial-lateral gradient in the hippocampus. To rule out the
possibility that this was observed by chance, we first fit a line
to each individual’s autocorrelation data in the medial-lateral
axis and compared the distribution of slopes to zero. For each
individual, we computed the slope for each run and then averaged
the slopes in each navigation condition so that each individual
had one average slope per navigation condition. We computed
one sampled t-tests for each hemisphere separately. All P’s < 0.05
suggesting that the medial-lateral slopes in all four navigation
conditions in both hemispheres were significantly greater than
zero (see Supplementary Fig. S2 and Supplementary Table S1 for
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Fig. 4. A) Single Voxel Autocorrelation: Lag 1. Single voxel autocorrelation values at lag 1 for every voxel in the hippocampus during spatial navigation.
These values are averaged across run and participant for each of the GPS, Familiar, Unfamiliar, and Mirrored conditions. A gradient from high to low
autocorrelation is observed in the anterior–posterior and medial-lateral axes, across all navigation conditions. B) Autocorrelation Clustering. Cluster
maps averaged across run and participant for each route type. High single voxel autocorrelation voxels cluster in the anterior-medial hippocampus and
low single voxel autocorrelation voxels cluster in the posterior-lateral hippocampus.

a full summary of the slopes and t-test results). These results sug-
gest that we did not observe the medial-lateral gradient by chance.
In the next section, we investigate the differences between navi-
gation conditions in more depth.

Autocorrelation clustering
As with Dataset 1, autocorrelation clustering revealed three dis-
tinct clusters in the left and right hemispheres for the Famil-
iar, Unfamiliar, and Mirrored conditions (Fig. 4B). For Familiar,
Unfamiliar, and Mirrored conditions, Cluster 1 was located in the
anterior-medial HPC and had the highest single voxel autocorre-
lation. Cluster 3 was located in the posterior-lateral hippocampus
and had the lowest single voxel autocorrelation. Cluster 2 was
located between Cluster 1 and 3 and had intermediate single voxel
autocorrelation. The GPS condition had three clusters in the right
hemisphere and only two in the left. The size of the clusters
produced in each navigation condition was similar; therefore,
we averaged across navigation condition and computed the size
(in voxels) of each cluster. Cluster 3 was the largest, followed
by Cluster 1 and Cluster 2. Cluster 2 was the smallest cluster.
For a summary of the number of voxels within each cluster, see
Supplementary Table S3.

Relating single voxel autocorrelation
to navigation condition
Subjective difficulty ratings collected after each route (1 = difficult,
9 = easy) suggested that across the navigation conditions, naviga-
tional difficulty increased. Participants rated the GPS routes as
the easiest (M = 7.2, SD = 1.46), followed by the Familiar condition
(M = 6.98, SD = 2.05), Unfamiliar condition (M = 4.35, SD = 2.66), and
the Mirrored condition, which was subjectively the most difficult
(M = 3.97, SD = 2.42).

As navigation becomes more difficult, it is beneficial to inte-
grate or maintain information over time, which may be reflected
in changes in single voxel autocorrelation. Specifically, more sta-
ble neural dynamics might enable individuals to maintain infor-
mation as one moves towards a goal. This prediction leads to two
possibilities. In the first, as navigational difficulty increases, we
might observe a uniform change in single voxel autocorrelation
across all voxels in the hippocampus. A second possibility is that
as difficulty increases, voxels that tend to exhibit high autocor-
relation during rest would differentially increase their autocorre-
lation relative to voxels that tend to exhibit low autocorrelation.

To investigate these possibilities, we calculated the average single
voxel autocorrelation (lag 1) of each of the three clusters for each
navigation condition.

If navigational difficulty leads to a uniform increase in auto-
correlation, we would observe no interaction between cluster and
navigation condition. However, if navigational difficulty dispro-
portionately affects the regions of the hippocampus that show
high autocorrelation during rest (Fig. 2), then more difficult routes
would elicit a larger change in autocorrelation in the anterior-
medial cluster (Cluster 1) compared with the more intermediate
or posterior-lateral clusters (Clusters 2 and 3).

Comparing average autocorrelation of clusters across
navigation condition
We compared the average single voxel autocorrelation of each
cluster across the four route conditions: GPS, Familiar, Unfamiliar,
and Mirrored. In both the left and right hemisphere, across all four
navigation conditions, Cluster 1 had the highest autocorrelation
(Left: M = 1.00, SD = 1.27; Right: M = 0.77, SD = 1.44) compared with
Cluster 2 (Left: M = −0.11, SD = 0.64; Right: M = −0.21, SD = 0.51) and
Cluster 3 (Left: M = −0.55, SD = 0.11; Right: M = −0.55, SD = 0.13),
which is consistent with our findings from the autocorrelation
clustering in Dataset 1.

To test whether there was a significant difference between sin-
gle voxel autocorrelation during different navigation conditions,
we ran a linear mixed effects model on the autocorrelation of
the clusters. We included Hemisphere, Cluster, and Navigation
condition (GPS, Familiar, Unfamiliar, and Mirrored) as predictors
in the model and participant as a random intercept in the random
effects term. We found a significant effect of Hemisphere (F(1,
1,383.19) = 10.18, P < 0.001), a significant effect of Cluster (F(2,
1,383.10) = 449.48, P < 0.001), and a significant effect of Naviga-
tion condition (F(3, 1,384.94) = 7.85, P < 0.001) (Fig. 5). We found a
significant Cluster × Hemisphere interaction (F(2, 1,383.18) = 4.49,
P < 0.05) and a significant Cluster × Navigation condition interac-
tion (F(6, 1,383.12) = 5.53, P < 0.001).

A post hoc analysis of the main effect of Hemisphere revealed
that the single voxel autocorrelation was greater in the left hip-
pocampus compared with the right hippocampus (t(1,383) = 3.19,
P < 0.01). Pairwise comparisons of the clusters suggest that auto-
correlation was greatest in Cluster 1 compared with Cluster 2
(t(1,383) = 21.01, P < 0.001) and Cluster 3 (t(1,383) = 29.45, P < 0.001).
Cluster 2 was greater than Cluster 3 (t(1,383) = 8.96, P < 0.001).
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Fig. 5. Effect of navigational condition on average single voxel autocorrelation. Average single voxel autocorrelation (lag 1) per cluster for each
navigation condition. Across both hemispheres, Cluster 1 had greater average single voxel autocorrelation compared with Clusters 2 and 3. The average
single voxel autocorrelation in Cluster 1 was modulated by navigational condition (in both left and right hemispheres). The autocorrelation of Cluster 1
was greatest when participants navigated Mirrored routes compared with GPS, Familiar, and Unfamiliar routes. The autocorrelation for Unfamiliar routes
was greater than GPS routes. There was no significant difference between Unfamiliar and Familiar; however, the Unfamiliar routes were numerically
greater than Familiar (in both hemispheres). There was no significant difference between the two easiest routes (Familiar and GPS). Error bars denote
standard error.

Analysis of the main effect of Navigation condition (collapsed
across Hemisphere and Cluster) revealed that autocorrelation
was significantly greater for the Mirrored compared with GPS
(t(1,387) = 3.86, P < 0.001), compared with Familiar (t(1,383) = 4.14,
P < 0.001), and compared with Unfamiliar (t(1,383) = 3.11, P < 0.05).
There was no significant difference between Familiar and Unfa-
miliar conditions and no significant difference between Familiar
and GPS.

An analysis of the Cluster × Hemisphere interaction revealed
that differences between hemispheres were driven by differences
in Cluster 1, where the left hemisphere was greater than the right
(t(1,383) = 3.93, P < 0.001). There were no significant differences
between Cluster 2 and Cluster 3 in the left and right hemi-
spheres. Furthermore, the Navigation condition × Cluster inter-
action revealed that there were significant differences between
navigation conditions, particularly in Cluster 1. There were no
significant differences between navigation conditions in Cluster
2 or Cluster 3. Therefore, we report the pairwise comparisons for
the different navigation conditions in Cluster 1, collapsed across
hemispheres.

In Cluster 1, the routes rated as most difficult, the Mir-
rored routes, had higher autocorrelation compared with GPS
(t(1,384) = 6.22, P < 0.001), Familiar (t(1,383) = 5.45, P < 0.001), and
Unfamiliar (t(1,383) = 3.95, P < 0.001). The Unfamiliar routes
had higher autocorrelation compared with GPS (t(1,384) = 3.03,
P < 0.001). There was no significant difference between the
two easier routes (Familiar and GPS) (P = 0.33). There were no
significant differences in autocorrelation between Unfamiliar and
Familiar (P = 0.39); however, Unfamiliar routes were numerically
greater than Familiar (in both hemispheres). This finding suggests
that more difficult navigation conditions were related to increases
in the autocorrelation in the anterior-medial hippocampus
(Cluster 1).

Temporal SNR control analysis
We ran a linear mixed effects model on the average autocorre-
lation per cluster (lag 1) with Hemisphere (left, right), Cluster (1,

2, 3), Navigation condition (GPS, Familiar, Unfamiliar, Mirrored),
and temporal SNR per cluster as fixed effects predictors. We
found a significant effect of Cluster (F(2, 1,370.90) = 99.53,
P < 0.001), a significant effect of Navigation condition (F(3,
1,359.73) = 4.74, P < 0.01), and a significant effect of temporal SNR
(F(1, 1,376.58) = 840.80, P < 0.001). Importantly, we found an inter-
action of Cluster and Navigation condition (F(6, 1,359.73) = 2.55,
P < 0.05). This suggests that Cluster and Navigation condition
significantly explained the variance in autocorrelation beyond
temporal SNR.

Additionally, we ran two different model comparisons. First, we
compared two models with Hemisphere, Navigation condition,
and temporal SNR as predictors. One model included Cluster as a
predictor and one model did not. We compared the models with
a Chi square test and found that the model including Cluster
was significant χ2 (8, n = 19) = 689.47, P < 0.001, indicating that
the model including Cluster was a better fit of the data than the
model without. Next, we compared two models with Hemisphere,
Cluster, and temporal SNR as predictors. One model included
Navigation condition as a predictor and one model did not. We
compared the models with a Chi square test and found that the
model including Navigation condition was significant χ2 (36,
n = 19) = 140.827, P < 0.001, indicating that the model including
Navigation condition was a better fit of the data than the model
without. These results suggest that temporal SNR alone cannot
explain the relationship between autocorrelation and navigation
condition.

Discussion
Here, we present a novel autocorrelation measure to investigate
intrahippocampal and intra-entorhinal processing. We provide
evidence of a medial-lateral gradient of autocorrelation in the
hippocampus, as well as a posterior-medial and anterior-lateral
gradient in the ERC. We found that voxels in the anterior-medial
hippocampus have a highly correlated, slower changing signal,
whereas voxels in the posterior-lateral hippocampus have a less
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correlated, faster changing signal (Fig. 2) (Brunec, Bellana, et al.
2018; Raut et al. 2020). Our study highlights the importance of
examining the medial-lateral axis of the hippocampus, which
has previously been an understudied feature of hippocampal
organization. We find novel evidence for a continuous gradient
in the ERC, with greater autocorrelation in the posteromedial ERC
and lower autocorrelation in the anterolateral ERC (Fig. 3). Lastly,
the present study is the first to show that gradients of single voxel
autocorrelation in the hippocampus are related to behavior dur-
ing navigation. Specifically, autocorrelation in the anterior-medial
hippocampus increased for difficult routes and was the greatest
in the left hemisphere (Fig. 5), whereas autocorrelation in the
posterior-lateral hippocampus was similar across routes. These
findings support the functional organization gradient hypothesis
that autocorrelation gradients are driven by intrinsic functional
properties of the hippocampus and entorhinal cortex and suggest
that these gradient patterns are not being driven by reciprocal
connectivity or physiological noise (functional organization gra-
dient; Fig. 1D).

Our data-driven approach, which allows voxels to cluster
according to their single voxel autocorrelation, uncovered a
multidimensional gradient in both the anterior–posterior and
medial-lateral axes in both the hippocampus and ERC (Figs. 2
and 4). In the hippocampus, the anterior–posterior axis has been
studied with respect to its role in representing graded information,
for example coarse-grained to fine-grained information (Poppenk
et al. 2013; Strange et al. 2014), large to small spatial distances
(Evensmoen et al. 2013; Nielson et al. 2015; Peer et al. 2019), and
long to short temporal distance (Nielson et al. 2015; Bellmund
et al. 2019). Investigations of representational differences along
the medial-lateral axis, however, have been limited because prior
work has used predefined anatomical segmentations limited
to the anterior and posterior portions of the long axis of the
hippocampus. Our single voxel autocorrelation method is not
restricted by predefined ROIs and proves to be a more precise
measure that detects subtle differences in signal along the
medial-lateral axis that have been previously overlooked and
that are modulated by navigational difficulty. Moreover, our
findings are consistent with recent evidence of an anterior-medial
hippocampal cluster that has been identified in resting-state MRI
studies (Dalton et al. 2021; Thorp et al. 2022) and functional fMRI
studies, which find that the anterior-medial hippocampus plays
a distinct role in a range of cognitive and episodic memory tasks
(Addis et al. 2012; Lee et al. 2013; Zeidman et al. 2015; Zeidman and
Maguire 2016; Dalton et al. 2018). In addition to the hippocampus,
we found similar distinctions in the ERC. We observed a gradient
of single voxel autocorrelation organization, such that greater
single voxel autocorrelation was observed in the posterior-medial
region and lower single voxel autocorrelation in the anterolateral
region of the ERC (Fig. 3). This gradient is consistent with previous
neuroimaging investigations of ERC which used high-resolution
fMRI and functional connectivity to define distinct subregions
within the human ERC (Maass et al. 2015; Navarro Schröder et al.
2015). Our analytic technique, however, goes beyond this prior
work by demonstrating, for the first time, continuous gradients
of autocorrelation in the ERC.

The present study demonstrates that the autocorrelation of the
fMRI signal is not just global noise, but instead carries meaningful
information about brain function that is directly related to
behavior. Autocorrelation is frequently characterized as noise that
masks meaningful signals and is unrelated to neuronal activity
and cognition; therefore, we included steps in our analyses
to control for noise and artifacts that might be driving the

autocorrelation signal (see Materials and Methods for details). A
well-known source of autocorrelation of the fMRI signal comes
from convolving the signal with the HRF (Friston et al. 1995).
Recent research found that, while the autocorrelation signal
mostly originates from the HRF, neural activity also contributes
to the autocorrelation signal (Arbabshirani et al. 2019). Moreover,
autocorrelation distinguished between global differences in
cognitive state (task vs. rest) and mental state (healthy vs.
schizophrenia) and these differences could not be accounted for
solely by the HRF, physiological noise or motion (Arbabshirani
et al. 2019). Moreover, the head motion control analysis of
Dataset 2 demonstrated that differences in head motion across
navigation conditions could not account for the differences
in autocorrelation observed across navigation condition (see
Supplementary Table S5). We therefore believe that the autocor-
relation of the HRF or head motion alone cannot account for the
findings presented here and that the autocorrelation is a measure
of meaningful neural activity.

The interpretation of single voxel autocorrelation as a behav-
iorally relevant signal is corroborated by studies that use differ-
ent measures of within-subject moment-to-moment signal and
then relate these measures to cognitive performance. Specifically,
research measuring changes in signal variability, as assessed by
the standard deviation in BOLD signal over time, found that
variability was related to task performance (see Garrett et al. 2013
for a review). For example, in younger adults, standard deviation
of the BOLD signal was modulated by cognitive task demand,
and as task difficulty increased, the variability decreased across
the brain (Garrett et al. 2014). This finding is consistent with
our findings from Dataset2, wherein increased autocorrelation
(i.e. lower variability) was related to increases in navigational
difficulty. Our technique goes beyond prior methods by measuring
the stability of a single voxel’s signal across multiple successive
timepoints. This allows us to examine how the signal of individual
voxels is maintained over an extended window of time and shows
that this measure is directly related to behavior.

Recent research suggests that autocorrelation might be a global
organizing principle and reflects intrinsic functional hierarchies
in the brain (Irish and Vatansever 2020; Raut et al. 2020). For
example, an analysis of resting state fMRI data calculated the
autocorrelation decay in single voxels across a temporal window
(0–8 s) and found a significant large-to-small timescale gradient
along the anterior–posterior axis in the hippocampus (Raut et al.
2020), which is consistent with reports by Brunec, Bellana, et al.
(2018). While current studies of autocorrelation cannot address
the direct link between the autocorrelation gradients and behav-
ior, our work suggests that autocorrelation can be used to discrim-
inate between cognitive states that are uniform across the brain,
leaving open the question of how autocorrelation gradients in
specific brain regions might be related to differences in cognition
during a behavioral task. Our analysis technique demonstrated
novel gradients during resting state and can also be applied to task
related activation to reveal their relation to on-going behavior and
is the first to show that changes in single voxel autocorrelation
gradients are directly related to changes in difficulty during a
navigation task.

Anterior hippocampal voxels are more stable across time com-
pared with the posterior hippocampus, which might enable the
anterior hippocampus to maintain prior information across time
during goal-directed navigation (Brunec, Bellana, et al. 2018). Our
method proved to be a more sensitive measure than previous
techniques (e.g. Brunec, Bellana, et al. 2018) because we were
able to show differences in autocorrelation across navigation

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/6/3265/6959310 by York U

niversity Libraries user on 23 April 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac480#supplementary-data


3278 | Cerebral Cortex, 2023, Vol. 33, No. 6

conditions2. More specifically, we found that the autocorrelation
in the anterior-medial hippocampus increased during navigation
of difficult routes (Fig. 5). The autocorrelation signal may reflect
the mechanism by which the hippocampus holds onto the past
and carries it forward during navigation when we are in unfamil-
iar or unpredictable environments. For example, when navigating
an unfamiliar route to a distant goal, the local details of the
environment might not be helpful to orient oneself in relation to
the goal; it may be more efficient, therefore, to keep in mind a
coarser, overall map of the environment with information about
steps already taken in order to reach the goal destination success-
fully. This large-scale representation may not be as useful to keep
online during navigation of well-known or familiar routes where
local details are sufficient for orienting and navigating to the goal,
which could explain the decreased single voxel autocorrelation in
the signal throughout the familiar routes (Fig. 5). This hypothesis
is supported by previous research which has shown that the
anterior hippocampus plays an important role in representing
larger spatial and temporal distances (Evensmoen et al. 2013;
Nielson et al. 2015) as well as representing coarser-grained, global
representations (Collin et al. 2015).

We found that single voxel autocorrelation in the anterior-
medial hippocampal cluster was higher in the left hemisphere
compared with the right hemisphere (Fig. 5). It is still unclear
whether this is representative of a stable difference in autocorre-
lation between the hemispheres or whether this reflects different
types of information that are engaged across the two hemispheres
during navigation. Future research is needed to determine the
nature of this hemispheric difference.

Another nonmutually exclusive possibility is that the single
voxel autocorrelation is representative of predictions that are cast
into the future. The notion that increased temporal similarity
is indicative of an extended spatiotemporal representation is
supported by recent work investigating the predictive horizons
along the hippocampal anteroposterior axis during navigation
(Brunec and Momennejad 2022). Brunec and Momennejad (2022)
found that as participants virtually navigated familiar, real-world
routes (a subset of the familiar routes presented here), hippocam-
pal activity was related to a hierarchical scale of horizon rep-
resentations, in which the posterior hippocampus represented
steps closer in the future trajectory (∼25 m), while the anterior
hippocampus represented steps further in the future trajectory
(∼175 m). It is possible, therefore, that the single voxel autocor-
relation we observed helps represent an upcoming navigational
trajectory, with immediate goals represented in posterior-lateral
regions and more distal goals in the anterior-medial hippocam-
pus. Our method and findings open the door for future studies
using high-resolution neuroimaging in combination with a task

2 We directly compared our hippocampal autocorrelation clusters to the
standard anatomical segmentations (head, body, tail) to determine whether
our autocorrelation clusters explain more variance in the data than the stan-
dard anatomical ROIs. We found that whereas the head/body/tail anatomical
segmentations capture some of the variance in autocorrelation along the
anterior–posterior axis, the standard segmentations failed to capture critical
relationships with behavior. Specifically, when using the anatomical ROIs,
we do not observe the interaction between ROI and navigation condition,
where autocorrelation in the anterior-medial hippocampus is greater for more
difficult navigation conditions. The full analysis can be found in the Sup-
plemental Materials (pp. 16–18). Moreover, we compared the effect size of
the autocorrelation cluster labels to the effect size of the anatomical ROI
labels and found a bigger effect size for the autocorrelation clusters compared
with anatomical ROIs. Lastly, we directly compared two models of the single
voxel autocorrelation throughout the hippocampus: one model included the
autocorrelation clusters labels and the anatomical ROI labels as fixed effect
predictors and the other model did not include autocorrelation cluster labels
as a fixed effect predictor. We found that the model including autocorrelation
cluster label explained the data better than the model with anatomical ROI
alone (see Supplemental Materials pp. 16–18).

that parametrically modulates the amount of information that is
carried over time in both predictable (familiar) and unpredictable
(unfamiliar) environments to uncover content that is carried for-
ward via the autocorrelation signal.

Although we were not able to relate the autocorrelation in
ERC to behavior due to the resolution of the navigation data,
if we apply the same logic we used for the hippocampus, our
findings are consistent with the notion that alERC codes for
local details and perceptual aspects of experience, whereas the
pmERC codes for global contexts. Specifically, the (antero-)lateral
ERC has been linked to fine-grained temporal processing (Tsao
et al. 2018; Montchal et al. 2019) and to processing of object-
context and within-object details (Yeung et al. 2017, 2019). The low
autocorrelation we observed in the alERC might indicate faster
updating of moment-to-moment changes and therefore support
fine-grained representations. One caveat is that without analyses
that directly relate the autocorrelation gradients in the entorhinal
cortex to behavior, we cannot be sure whether the autocorrelation
signal we observed in the entorhinal cortex supports low-to-high
functional timescales. Future investigations using high-resolution
scans can use our method to analyze continuous changes along
both anterior–posterior and medial-lateral axes of the ERC with-
out being restricted to anatomical subfield segmentations, per-
haps revealing a more nuanced understanding of the organization
of the ERC and relate it to behavior.

We observed three consistent ERC clusters in the right hemi-
sphere and two consistent ERC clusters in the left hemisphere,
suggesting that in this dataset, there was more variability in the
left ERC intermediate cluster. We replicated this hemispheric
asymmetry in both the left-to-right and right-to-left phase
encoding direction datasets from Dataset1 (see Fig. 3B and
Supplementary Fig. S3). These findings are interesting in light
of the fact that there is some evidence that the human right ERC
is larger than the left ERC (Insausti et al. 1998). Although the
current work found hemispheric asymmetries in autocorrelation
clustering with the resting state fMRI dataset (Dataset1, from the
HCP), we did not find this same entorhinal asymmetry when we
applied our single voxel autocorrelation method using a different
dataset in which resting state scans were collected approximately
25 min after continuous θ-burst stimulation was applied to either
the vertex (control site) or left angular gyrus (Coughlan et al.
2023). In this work, the autocorrelation clustering identified
only two reliable clusters (one in anterolateral ERC and one in
posteromedial ERC) in both the left and right ERC. One possible
explanation for this discrepancy across these 2 papers is that
the Dataset1 from the current work was collected at a higher
resolution than the dataset from Coughlan et al. (2023). Using
the higher resolution resting state scans might have enabled us
to observe entorhinal hemispheric differences in autocorrelation
clustering that did not show up in the lower resolution dataset. It
is not clear yet whether the hemispheric asymmetry is a stable
property of the left ERC. Future research is needed to determine
whether signal dynamics in the left ERC are consistently different
from those in the right ERC and whether there is a connection
between the number of autocorrelation clusters generated and
the volume of the left ERC.

It is currently unclear how the posterior-medial and anterior-
lateral subregions of the ERC are functionally related to the
anterior and posterior regions of the hippocampus. In the present
study, we found that clusters in the anterior-medial hippocampus
and posteromedial ERC had high single voxel autocorrela-
tion, whereas clusters in the posterior-lateral hippocampus
and anterolateral ERC had low single voxel autocorrelation.
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These distinctions along the anterior–posterior and medial-
lateral axes of the ERC are consistent with previous functional
connectivity findings (Navarro Schröder et al. 2015); however,
functional connectivity and neuroanatomical studies in humans
have been limited and do not find any clear differences between
the anterior and posterior portions of the hippocampus with
respect to their connectivity to different subregions in the ERC
(Maass et al. 2015; Navarro Schröder et al. 2015; Syversen et al.
2021). Functional connections between these regions might be
evident in the scale of information processing in the hippocampus
and ERC. For example, it is possible that the pattern of low
single voxel autocorrelation in anterolateral ERC and posterior-
lateral hippocampus supports fine-grained processing—precise
temporal processing in the anterolateral ERC (Bellmund et al.
2019; Montchal et al. 2019) and local spatial details in the posterior
hippocampus (Doeller et al. 2008; Hirshhorn et al. 2012; Lee et al.
2012; Evensmoen et al. 2013).

There are currently no clear neuroanatomical links between
the anterolateral ERC and posterior-lateral hippocampus or the
anterior-medial hippocampus and posteromedial ERC. There are,
however, probable connections between the anterior ERC and
lateral hippocampus and posterior ERC with medial hippocampus
(Strange et al. 2014; Witter et al. 2017; Nilssen et al. 2019; Witter
and Amaral 2021). There is evidence that the temporal dynam-
ics in the anterior-medial hippocampus and posteromedial ERC
fluctuate together (Coughlan et al. 2023). Using the single voxel
autocorrelation method described in this paper, Coughlan et al.
(2023) demonstrated that when hippocampal-targeted transcra-
nial magnetic stimulation is applied to the angular gyrus, the sin-
gle voxel autocorrelation within the anterior-medial hippocam-
pus and posteromedial ERC decreases. The decrease in single
voxel autocorrelation within the anterior-medial hippocampus
was also related to a decrease in functional connectivity to the
angular gyrus (Coughlan et al. 2023). Our results, therefore, open
the door for future investigations to characterize more fully the
nature of anterior and posterior hippocampal signal dynamics in
relation to the entorhinal subregions in humans and in relation to
other structures, such as the angular gyrus (Coughlan et al. 2023),
orbitofrontal cortex (Syversen et al. 2021), and prefrontal cortex
(Barredo et al. 2015; Vaidya and Badre 2020).

The results presented here reveal 2 continuous gradients along
the anterior–posterior and medial-lateral axes in the hippocam-
pus and ERC. One outstanding question is whether there is new
information that can be gained by investigating the two auto-
correlation gradients separately, or whether the information they
represent is redundant. Another outstanding question is whether
our novel single voxel autocorrelation method can be applied
with shorter timescales so that they can be used with event-
related designs. Here, we use the entire timecourse of the voxel’s
activity to calculate the single voxel autocorrelation through-
out the entire run, but it remains to be seen whether we can
adapt our method to examine how autocorrelation changes over
shorter time windows. This would allow us to ask new questions
about what kind of information is being carried in the autocor-
relation signal during discrete or shorter events and at event
boundaries, which are known to trigger changes in hippocampal
activity associated with integration of information across events
(DuBrow and Davachi 2013; Ezzyat and Davachi 2014). Finally, this
method can be used to investigate differences in autocorrelation
within subfields of the hippocampus. For example, it has been
proposed that CA1 is implicated in integrating information in
memory, whereas DG/CA3, which mediates pattern separation,
may be more implicated in making fine distinctions in memory

(Leutgeb et al. 2004; Yassa and Stark 2011; Kyle et al. 2015;
Schapiro et al. 2017). Integration processes in CA1, therefore,
might be supported by voxels with high single voxel autocor-
relation, while separation processes in DG/CA3 might be better
supported by low single voxel autocorrelation. Moreover, recent
evidence also suggests that resting-state functional connectivity
gradients in the hippocampus along the anterior–posterior and
medial-lateral axes are closely associated with the microstructure
of hippocampal subfields (Vos de Wael et al. 2018). Future research
using our method and high-resolution fMRI is needed to test these
differences within subfields.

Our studies were inspired initially by single-unit recording
studies in rodents (Gothard et al. 1996; Maurer et al. 2005; Brun
et al. 2008; Kjelstrup et al. 2008; Cavanagh et al. 2016). We believe
our findings, however, have gone beyond replicating the rodent
findings in humans, a worthy task in its own right, but extended
the findings to the point that they can now be used to inform
future studies in rodents and humans. We provide some examples
in which this is the case. For example, our method enabled us
to find differences in autocorrelation along the anterior–posterior
and medial-lateral axes in the entorhinal cortex, which have only
been examined in a restricted region in rodents (Brun et al. 2008).
Our findings are consistent with neuroanatomical and neuro-
physiological divisions in that structure (human: Maass et al.
2015; monkey: Witter and Amaral 2021; rat: Witter et al. 2017).
Furthermore, our findings are consistent with recent evidence
from resting-state fMRI of 2 functional connectivity gradients in
the hippocampus: a primary gradient along the anterior–posterior
axis and a secondary gradient along the medial-lateral axis (Vos
de Wael et al. 2018). Although activity of a single voxel that is
comprised of thousands of neurons may be considered to be
a coarser unit of analysis than recordings from single units, it
may be the case that it is the operation of a population of these
neurons that is most closely linked to organizational temporal
dynamics. It is the gradients revealed by autocorrelation at the
single voxel level that enabled us to link hippocampal dynamics
to behavior. In addition, we were able to segment the populations
into clusters, suggesting subdivisions that would not be evident at
the single-unit level. It would be worthwhile to determine whether
similar clusters are found in rodents and examine their functional
significance. Similar analyses at the population-level in rodents
may yield information about the relation of neural dynamics to
higher level memory representations and goals, an enterprise that
is just beginning (Morrissey et al. 2017; Jacob and Josselyn 2020).

Limitations
We observed considerable spatial variability in Cluster 2 (as indi-
cated by the small Jaccard coefficients), which was evident both
across individuals as well as across runs within individuals. One
interesting hypothesis is that this variability reflects fundamental
flexibility in the representational properties of this “intermediate”
hippocampal region (Fanselow and Dong 2010). That is, Cluster 2
voxels may adjust their temporal dynamics to be more like Cluster
1 or Cluster 3 depending on the nature of the task. While there
may be underlying functional or biological properties of Cluster
2 that make it distinct from Cluster 1 and 3, the low reliability of
Cluster 2 voxels within individuals makes this hypothesis chal-
lenging to assess in the current study. To properly test whether
Cluster 2 voxels flexibly adjust their temporal dynamics based on
task demands, a future study could design two different tasks: one
that would preferentially engage the posterior hippocampus and
one that would preferentially engage the anterior hippocampus.
We could then measure the change in spatial distribution of
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Cluster 1 and 3 across both tasks. Evidence in support of a rep-
resentationally flexible intermediate hippocampal region would
be finding that voxels in the intermediate hippocampus change
to look Cluster 3 during a task that preferentially engages the
posterior hippocampus (Cluster 3) and that these same voxels
then shift to look more such as Cluster 1 during a task that
preferentially engages the anterior hippocampus (Cluster 1). Addi-
tionally, research investigating the cytoarchitectonic structure of
the primate neocortex suggests that transitions between different
brain areas are continuous and there are not discrete board-
ers between areas (Rockel et al. 1980). In the present work, we
assign each voxel a single label; however, one voxel can contain
information from different brain areas. This spatial limitation of
fMRI makes it difficult to know whether the discrete transitions
we observed between clusters actually reflect the underlying
cytoarchitectonic gradient that is inherent to the hippocampal
and entorhinal structures or whether it is the result of forcing
each voxel to be assigned to a single cluster. Future research is
needed to further characterize the intermediate regions of the
hippocampus and entorhinal cortex.

Another limitation of the present study is that it remains
unclear whether these gradients of autocorrelation are found
throughout the brain or if they are unique to the hippocampus
and entorhinal cortex. In order to develop this new technique,
we focused our analyses on the hippocampus and entorhinal
cortex because we had strong predictions about the gradients
we might observe in the these regions based on the underlying
neural signals evident from single unit recordings in rodents and
previous fMRI studies in humans (Jung et al. 1994; Hasselmo
2008; Kjelstrup et al. 2008; Komorowski et al. 2013; Evensmoen
et al. 2015; Maass et al. 2015; Navarro Schröder et al. 2015;
Syversen et al. 2021). Moreover, a recent study has examined
the autocorrelation of individual voxels across the whole brain
(Raut et al. 2020). They found cortical and subcortical hierarchi-
cal gradient across the brain that were related to the organi-
zation of functional networks. Networks associated with faster
processing timescales (e.g. motor, visual, cingulo-percular) had
lower autocorrelation, while networks associated with slower
processing timescales (dorsal attention, frontoparietal control,
default mode). They also examined the hippocampus and found a
gradient of autocorrelation similar to the results presented in this
paper—an increase of low-to-high autocorrelation extending from
the posterior to anterior hippocampus. Future research using
our method can examine single voxel autocorrelation gradients
throughout the brain and test whether they are modulated by
behavior. This work can help our understanding of how single
voxel autocorrelation is related to the underlying biological neural
signals and the functional processes related to other brain regions
and networks.

Conclusion
Our results provide compelling evidence for a gradation of single
voxel autocorrelation in the hippocampus and ERC. Our single
voxel method proved to be a fine-grained measure that revealed
subtleties in the spatial organization of autocorrelation, going
beyond prior methods, and allowed us to observe graded sig-
nals along anterior–posterior and medial-lateral axes in both
regions. Furthermore, we show for the first time that differences
in single voxel autocorrelation gradients in the hippocampus can
be directly related to differences in difficulty during a virtual
navigation task, thus opening the door for future research to ask

new questions of the autocorrelation signal and uncover how it is
related to behavior.
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